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Quasistatic Characteristics of Covered
Coupled Microstrips on Anisotropic

Substrates: Spectral and
Variational Analysis
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Abstract —In this paper, expressions to compute the upper and lower

bounds on true values of the even- and odd-mode capacitances of covered

coupled microstips over anisotropic substrates are obtained by using the

Fourier transform and the variational approach. The method provides

accurate calculation and yields the margins of error in the computation.

Some examples are shown.

I. INTRODUCTION

I N RECENT YEARS, the boundary value problems

involving microstrip lines on anisotropic substrates have

been approached from numerical [1] and analytical points

of view [2]–[9]. Alexopoulos et al, [2], [3] have shown the

effect of an anisotropic substrate on the characteristics of

covered coupled microstrips by using the method of mo-

ments. Methods for calculating the parameters of single [4],

[5] and coupled microstrip lines [6]-[8] have been per-

formed by applying transformation from anisotropic to

isotropic problems. Green’s functions for examples with

anisotropic medium have been obtained using the image-

coefficient method in [9].
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The spectral-domain approach has been used extensively

on problems of microstrip lines on isotropic substrates, and

variational expressions of capacitances have been reported

[10], [11]. This method was extended by [12] and [13] to

analyze the characteristic parameters of single and coupled

microstrips on anisotropic substrates.

The purpose of this paper is to solve the variational

problem involving covered coupled microstrips on aniso-

tropic substrates with an arbitrary permittivity tensor by

using the Fourier transform, and obtaining in this way

stationary expressions to compute the upper and lower

bounds of the mode quasi-static characteristics of this

structure. The method shows the equivalence between the

mode capacitances of this structure and another with an

isotropic substrate, in agreement with the reported results

[14]. Besides, it is a fast and accurate calculation method in

most practical cases and it yields the margins of error in

the computation.

II. ANALYSIS

Consider the configuration of covered coupled micro-

strips shown in Fig. 1, which comprises two zero-thickness

strips on an anisotropic dielectric substrate, which permit-
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Fig. 1. Cross section of covered coupled snicrostrips.

tivity is given by the following tensor:

Now, we must calculate

ue, o=ul+ull. (6)

The electric energy stored in Region I U1 has been

calculated in [12]

and the electric energy stored in Region II U1l can be

evaluated using (7) with c~l = C:2 = 1, c~2= c;, = O, and
H-+A.

Substituting in (5), the expression of C.,. is given by

One of these strips is at potential V and the other is at

potential * V for even or odd mode, respectively. Both, the ~(p) =2(m~(x)cos(px)dx, even-mode
.-

(1)
c.,. = *VJWI%(B)I’WWP

where

ground and microstrips cover planes we at po;ential zero.
-u

In the spectral-domain, a quasi-static s&tion to the fi(~)=2~w~(x)sin( ~x)dx,
potential problem can be obtained by solving Laplace’s

odd-mode
o

equation in the anisotropic region (Region I) as well as in and
the air region (Region II), subject to the proper boundary

condition.
((

~ (% + %)2)”2g(~)=~ coth(pA)+ 6~1C;2–~
The potential distribution @I(x, y) satisfies the Laplace’s

equation in Region I

vT~(mT+l(x, y)) =0. (2)
coth(~~-(c~;~~3~)’2.H]

After applying the boundary conditions, the Fourier

transformed potential @I(~, y) can be expressed by

where ~e,.( ~ ) is the Fourier transformed potential on the

air-anisotropic dielectric interfase, even or odd mode.
In Region H, the solution of the Laplace’s equation

(spectral domain) 611(~, y) can be written

a,,(p, y)=~, o(/3)
sinh(lj?l(A+ H-y)) . (4)

sinh(l~lA)

(3) and (4) can be used to obtain variational expressions

for the upper and lower bounds on the capacitances per

unit length C,, ~, even or odd-mode.

A. Upper Bound on Ce,~

The mode capacitances can be evaluated by the electric

energy stored in this configuration U,,.

(8a)

(8b)

(8c)

(9)

(8) is a variational expression for the mode capacitances

of covered microstrips on anisotropic substrates similar to

the one that was obtained in [12] for a single microstrip.

It is clear that assur&ng a suitable trial function for

V,, ~(x), the upper bounds of C., ~ can be computed from

(8). In this paper,” the following expansion is proposed for

~,.(x) as an extension of the method reportedin[11]-[13].

1J(Jx)= 1, s/2<x<s/2+w (lo)
N+l

~ bJ(x-d)-J, x>s/2+w

j=l

where

{
~= M+l, even-mode

M+2, odd-tiode

and

d=:(S+W).

Considering the V. .(x) values at both strips edges and

substituting the Fouri’er transform of ( 10) into (8a), we find

that (8a) takes the form

u
C,, O=QQ.

v’
(5)
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where to, ~1, and TJ have been given in [13]. sion and readily obtain

The coefficients al and bj have been calculated using the co
Rayleigh-Ritz procedure. Hence, we have —= *J”WW.,OIWc (16)

e,o

c

[

N
e,o— = 2 *m+ f ai$oz+ ~~,bJrOJ
60 ‘R ) (12) where Q is the charge on one strip

,=J
b,(~) = 2~S’2+ ‘P=(X) COS(&X)dX, even-mode

where a, and b, are obtained from the following system of s/2

equations: (17a)
M N

M N

~ aifi, + ~ b,r,[=-ro,, j=l,”.”,~ (lsb)
i=l 1=1

Wd ~m, +0,, ro~, 4,,, &j, and ~,~ have been given in [131.
By using (12), we can determme the mode capacitances

(upper bound) for covered coupled microstrips on aniso-

tropic substrates.

The analysis outlined above has been carried out for

covered coupled microstrips, with strips width W.q and

separated by a distance Se~ over an isotropic substrate with

relative permittivity c~~ and thickness H,q, and a separa-

tion between microstrips cover plane and air-substrate

interfase A,q. The C,,.O expressions for this structure are

identical to those obtained by (12), giving

( )**+cy,+c%,)’ ‘“2E:q = C,,c” (14a)

‘eq=(H’:::’l’)’’2”H(14b)

Weq= w

Seq= s

(14C)

(14d)

Aeq=A. (14e)

Consequently, the mode capacitances of covered coupled

microstrips on anisotropic substrates are equivalent to a

similar structure on an isotropic substrate with relative

permittivity and thickness given by (14a) and (14b), respec-

tively.

For practical anisotropic dielectric substrates C~2= (~1, if

a steady magnetic field is not applied to the dielectric [15],

e$~ and H,q are given by

(15b)

~~(~) = 2~s’2+ ‘po(x)sin(px)dx, odd-mode
s/2

(17b)

and

G(p)= (~(coth(~A)+6&coth( /3He,)))-’ (18)

Following a similar procedure to the one used in upper

bound calculation, P= and PO are expended in terms of a

power series of X, X=x – S/2

M+l

Pe= ~ ~Z&l (19a)
i=l

M+]

P.= x %(w’–x) i-’. (19b)
,=1

aM+, can be obtained from Q and the remaining a, using

the following system of equations

: (q+z,=-$ o,, ,...,M.j=l (20)
,=1

Therefore, we have

c (.
M

)

–1

e>o _ T
2 4’00 + z %+01 (21)

co ,=1

where tm, I/JO,,and +,, have been given in [13].
Both (12) and (21) are useful to compute the mode

capacitances, upper and lower bounds, for covered coupled

microstrips on anisotropic substrates, so that the margins

of error in the calculation can be known. The accuracy of

the method is insured by increasing M and N in (12) and

M in (21).

III. EXAMPLES

As an application of the method outlined above, the

quasi-static characteristics of some particular configura-

tions have been computed. In these cases, the mode imped-

ances (Z,,., even or odd mode) and normalized phase
velocities ( Ve,~/c, even or odd mode) can be calculated by

the following relations:

These are in agreement with other reported results [14].
~(%oc:o)-’”z =:e,o (22a)

B. Lower Bound on C.,.
v

()

C& “2
The stationary values expression of the capacitance per _W?=

c
(22b)

unit length given in [10] can be used to obtain the lower
c e,o

bounds on the mode capacitances of the covered coupled where C;. denotes the mode capacitances with the sub-

microstrips over arbitrary anisotropic substrate. Therefore, strate removed.

we apply the transformation equations (14) to that expres- First, we have computed 2,, ~ for covered coupled micro-
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Fig. 2. Even- and odd-mode impedances Z, and ZO versus i) for covered Fig. 3. Even- and odd-mode normalized phase velocities o,/c and vO/c
coupled microstrips on anisotropic substrates ( c~ = 40, c; = 10, W/H =

S/H = 1).
versus 9 for covered coupled microstrips on anisotropic substrates

(cF = 40, c;= 10, W/H= S/H= l).

strips on isotropic substrates from the average values of the

upper and lower bounds of C, ~ (12) with M = 2 and N = 1,

and (21) with M = 2, respe&ively. It is found that the

calculated impedances using this procedure are very accu-

rate when compared with the reported in [16].

C; ~ and C,, ~ for a single-crystal sapphire substrate

(~~1= 9.40, ~~2= 11.60, f~z = ~~1= O, [1]) have been com-
puted using (12), upper bound on C., ~(C~O), with M = 2

and N =1, and (21), lower bound on C,, ~(Ce~O), with

M =2. The results are summarized in Table I. The margin

of absolute error in the calculation can be estimated practi-

cally between 2 and 4 percent for even-mode and between

4 and 5.5 percent for odd-mode, over range of A/H, S/H,

and W’/H which were calculated with the previous values

of M and N. When a smaller difference between the upper

and lower bounds on C,,. is required, or the strip edges

singularities were significatives, the computed values can

be improved by increasing M and N.

Finally, an anisotropic substrate cut in the direction with

TABLE I
MODE CAPACITANCES OF COVERED COUPLED MICROSTRIP LINES

SAPPHIRE SUBSTRATE W1TIKIUT SUBSTRATE*
= 9.40 , e:% = 11.60

A/H S/H win
‘,1

~+ - ~+ ~vt ~v. ~v+ ~“-

C=
f

c=
?0 ~

0
?0 70 ?0 20

1,0 21,54 21.02 4,51 4,38 27,90 26.69 5.42 5.18

0,5

2.0 35.69 34.37 7,67 7,33 42.06 39,91 8,59 8.12

0.5

1.0 1,0 23,05 22,32 ‘,77 ‘.60 2558
24, S0 5.09 6.86

2.0 37.17 35,65 7,90 7,56 39.80 37,7A 8.27 7.79

1.0 20. 3& 19.85 3.32 3.24 27,07 25.89 4.60 4.40

0,5
2,0 33.37 32.22 5.37 5.20 40.13 37.98 6.68 6.32

1.0

1.0 21.8? 21.16 3.57 3.67 24.62 23.58 4.14 3.X+

1.0

2.0 34.86 33.50 5,63 5.43 37,7JI 35.82 6.21 5,91

1.0 19.82 19.36 2.77 2,69 26.85 25.67 4,36 4,16

0,5 —

2.0 32.29 31.23 4.27 4.17 39.50 37.33 5.’97 5.66

2,0

1,0 21,28 20.63 2,99 2.90 24.34 23.31 3.83 3.67

1.0

2.0 33,77 32,51 4.50 6,?8 36,96 35,12 8.42 5.18

an angle O from the principal axis (~ – q axis) has been nko

considered. Figs. 2 and 3 show the mode impedances and for 8 = 50.8° when A/H= 0.5, and O = 24.1° if A/H= 2.
normalized phase velocities, respectively, as functions of 6 For open coupled-strips case ( A ~ m), O. = tIOfor 0 = 11.9°,

for c?= 40, e;= 10, W/H=l, S/H= 1, A/H= 0.5, 2, which is good agreement with the results [8]. The previous
where c? and c~ are the relative permittivities along the { results were obtained by (21), M = 2, and the relations

and q directions, respectively. It can be shown that V. = 00 (22).
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IV. CONCLUSIONS

In this paper, we have shown that the Fourier transform

and the variational approach are useful to obtain two

stationary expressions for the mode capacitances of covered

coupled microstrip lines on an arbitrary anisotropic

substrate. Both expressions provide a fast and accurate

calculation of the upper and lower bounds on *he mode

capacitances. Besides, they yield the margins of erwr in the

computation. The presented analysis shows the equivalence

between the mode capacitances of these lines and others

with an isotropic substrate. As examples of applications,

upper and lower bounds on mode capacitances of covered

coupled microstrips with sapphire substrate and others

without substrate are computed. Finally, it is shown in

graphical form that the phase velocities of these structures

can be matched if an anisotropic substrate is used, in

agreement with reported results for open coupled micro-

strips [8].
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